100 research outputs found

    The effectiveness of Paxlovid treatment in long-term care facilities in South Korea during the outbreak of the Omicron variant of SARS-CoV-2

    Get PDF
    Objectives On November 5, 2021, Pfizer Inc. announced Paxlovid (nirmatrelvir+ritonavir) as a treatment method that could reduce the risk of hospitalization or death for patients with confirmed coronavirus disease 2019 (COVID-19). Methods From February 6, 2022 to April 2, 2022, the incidence of COVID-19 and the effects of treatment with Paxlovid were analyzed in 2,241 patients and workers at 5 long-term care facilities during the outbreak of the Omicron variant of severe acute respiratory syndrome coronavirus 2 in South Korea. Results The rate of severe illness or death in the group given Paxlovid was 51% lower than that of the non-Paxlovid group (adjusted risk ratio [aRR], 0.49; 95% confidence interval [CI], 0.24−0.98). Compared to unvaccinated patients, patients who had completed 3 doses of the vaccine had a 71% reduced rate of severe illness or death (aRR, 0.29; 95% CI, 0.13−0.64) and a 65% reduced death rate (aRR, 0.35; 95% CI, 0.15−0.79). Conclusion Patients given Paxlovid showed a lower rate of severe illness or death and a lower fatality rate than those who did not receive Paxlovid. Patients who received 3 doses of the vaccine had a lower rate of severe illness or death and a lower fatality rate than the unvaccinated group

    Improvement of Biological Effects of Root-Filling Materials for Primary Teeth by Incorporating Sodium Iodide

    Get PDF
    Therapeutic iodoform (CHI3) is commonly used as a root-filling material for primary teeth; however, the side effects of iodoform-containing materials, including early root resorption, have been reported. To overcome this problem, a water-soluble iodide (NaI)-incorporated root-filling material was developed. Calcium hydroxide, silicone oil, and NaI were incorporated in different weight proportions (30:30:X), and the resulting material was denoted DX (D5~D30), indicating the NaI content. As a control, iodoform instead of NaI was incorporated at a ratio of 30:30:30, and the material was denoted I30. The physicochemical (flow, film thickness, radiopacity, viscosity, water absorption, solubility, and ion releases) and biological (cytotoxicity, TRAP, ARS, and analysis of osteoclastic markers) properties were determined. The amount of iodine, sodium, and calcium ion releases and the pH were higher in D30 than I30, and the highest level of unknown extracted molecules was detected in I30. In the cell viability test, all groups except 100% D30 showed no cytotoxicity. In the 50% nontoxic extract, D30 showed decreased osteoclast formation compared with I30. In summary, NaI-incorporated materials showed adequate physicochemical properties and low osteoclast formation compared to their iodoform-counterpart. Thus, NaI-incorporated materials may be used as a substitute for iodoform-counterparts in root-filling materials after further (pre)clinical investigation

    Species Distribution and Susceptibility to Azole Antifungals of Candida Bloodstream Isolates from Eight University Hospitals in Korea

    Get PDF
    PURPOSE: The incidence of Candida bloodstream infections (BSI) has increased over the past two decades. The rank order of occurrence and the susceptibility to antifungals of the various Candida species causing BSI are important factors driving the establishment of empirical treatment protocols; however, very limited multi-institutional data are available on Candida bloodstream isolates in Korea. MATERIALS AND METHODS: We investigated the susceptibility to azole antifungals and species distribution of 143 Candida bloodstream isolates recovered from eight university hospitals over a six-month period. Minimal inhibitory concentrations (MICs) of fluconazole, itraconazole, and voriconazole for each isolate were determined by the broth microdilution method of the Clinical and Laboratory Standards Institute (CLSI). RESULTS: The Candida species recovered most frequently from the blood cultures was C. albicans (49%), followed by C. parapsilosis (22%), C. tropicalis (14%), and C. glabrata (11%). The MIC ranges for the Candida isolates were 0.125 to 64 microg/mL for fluconazole, 0.03 to 2 microg/mL for itraconazole, and 0.03 to 1 microg/mL for voriconazole. Overall, resistance to fluconazole was found in only 2% of the Candida isolates (3/143), while the dose-dependent susceptibility was found in 6% (8/143). The resistance and dose-dependent susceptibility of itraconazole were found in 4% (6/143) and 14% (20/143) of the isolates, respectively. All bloodstream isolates were susceptible to voriconazole (MIC, < or = 1 microg/mL). CONCLUSION: Our findings show that C. albicans is the most common cause of Candida-related BSI, followed by C. parapsilosis, and that the rates of resistance to azole antifungals are still low among bloodstream isolates in Korea.ope

    Blood-testis barrier integrity depends on Pin1 expression in Sertoli cells

    Full text link
    The conformation and function of a subset of serine and threonine-phosphorylated proteins are regulated by the prolyl isomerase Pin1 through isomerization of phosphorylated Ser/Thr-Pro bonds. Pin1 is intensely expressed in Sertoli cells, but its function in this post mitotic cell remains unclear. Our aim was to investigate the role of Pin1 in the Sertoli cells. Lack of Pin1 caused disruption of the blood-testis barrier. We next investigated if the activin pathways in the Sertoli cells were affected by lack of Pin1 through immunostaining for Smad3 protein in testis tissue. Indeed, lack of Pin1 caused reduced Smad3 expression in the testis tissue, as well as a reduction in the level of N-Cadherin, a known target of Smad3. Pin1&minus;/&minus; testes express Sertoli cell marker mRNAs in a pattern similar to that seen in Smad3+/&minus; mice, except for an increase in Wt1 expression. The resulting dysregulation of N-Cadherin, connexin 43, and Wt1 targets caused by lack of Pin1 might affect the mesenchymal&ndash;epithelial balance in the Sertoli cells and perturb the blood-testis barrier. The effect of Pin1 dosage in Sertoli cells might be useful in the study of toxicant-mediated infertility, gonadal cancer, and for designing male contraceptives

    Candida haemulonii and Closely Related Species at 5 University Hospitals in Korea: Identification, Antifungal Susceptibility, and Clinical Features

    Get PDF
    Background. Candida haemulonii, a yeast species that often exhibits antifungal resistance, rarely causes human infection. During 2004-2006, unusual yeast isolates with phenotypic similarity to C. haemulonii were recovered from 23 patients (8 patients with fungemia and 15 patients with chronic otitis media) in 5 hospitals in Korea. Methods. Isolates were characterized using D1/D2 domain and ITS gene sequencing, and the susceptibility of the isolates to 6 antifungal agents was tested in vitro. Results. Gene sequencing of the blood isolates confirmed C. haemulonii group I (in 1 patient) and Candida pseudohaemulonii (in 7 patients), whereas all isolates recovered from the ear were a novel species of which C. haemulonii is its closest relative. The minimum inhibitory concentration (MIC) ranges of amphotericin B, fluconazole, itraconazole, and voriconazole for all isolates were 0.5-32 mu g/mL (MIC(50), 1 mu g/mL), 2-128 mu g/mL (MIC(50), 4 mu g/mL), 0.125-4 mu g/mL (MIC(50), 0.25 mu g/mL), and 0.03-2 mu g/mL (MIC(50), 0.06 mu g/mL), respectively. All isolates were susceptible to caspofungin (MIC, 0.125-0.25 mu g/mL) and micafungin (MIC, 0.03-0.06 mu g/mL). All cases of fungemia occurred in patients with severe underlying diseases who had central venous catheters. Three patients developed breakthrough fungemia while receiving antifungal therapy, and amphotericin B therapeutic failure, which was associated with a high MIC of amphotericin B (32 mu g/mL), was observed in 2 patients. Conclusions. Candida species that are closely related to C. haemulonii are emerging sources of infection in Korea. These species show variable patterns of susceptibility to amphotericin B and azole antifungal agents.Shin JH, 2007, J CLIN MICROBIOL, V45, P2385, DOI 10.1128/JCM.00381-07Khan ZU, 2007, J CLIN MICROBIOL, V45, P2025, DOI 10.1128/JCM.00222-07Lee JS, 2007, J CLIN MICROBIOL, V45, P1005, DOI 10.1128/JCM.02264-06Pfaller MA, 2006, J CLIN MICROBIOL, V44, P819, DOI 10.1128/JCM.44.3.819-826.2006Sugita T, 2006, MICROBIOL IMMUNOL, V50, P469Clancy CJ, 2005, ANTIMICROB AGENTS CH, V49, P3171, DOI 10.1128/AAC.49.8.3171-3177.2005Odds FC, 2004, J CLIN MICROBIOL, V42, P3475, DOI 10.1128/JCM.42.8.3475-3482.2004Rodero L, 2002, J CLIN MICROBIOL, V40, P2266, DOI 10.1128/JCM.40.6.2266-2269.2002*CLSI, 2002, M27A2 CLSISugita T, 1999, J CLIN MICROBIOL, V37, P1985Pfaller MA, 1998, DIAGN MICR INFEC DIS, V32, P223Nguyen MH, 1998, J INFECT DIS, V177, P425Kurtzman CP, 1997, J CLIN MICROBIOL, V35, P1216LEHMANN PF, 1993, J CLIN MICROBIOL, V31, P1683GARGEYA IB, 1991, J MED VET MYCOL, V29, P335

    Positive Association between Aspirin-Intolerant Asthma and Genetic Polymorphisms of FSIP1: a Case-Case Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aspirin-intolerant asthma (AIA), which is caused by non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin, causes lung inflammation and reversal bronchi reduction, leading to difficulty in breathing. Aspirin is known to affect various parts inside human body, ranging from lung to spermatogenesis. <it>FSIP1</it>, also known as <it>HDS10</it>, is a recently discovered gene that encodes fibrous sheath interacting protein 1, and is regulated by amyloid beta precursor protein (APP). Recently, it has been reported that a peptide derived from APP is cleaved by α disintegrin and metalloproteinase 33 (<it>ADAM33</it>), which is an asthma susceptibility gene. It has also been known that the <it>FSIP1 </it>gene is expressed in airway epithelium.</p> <p>Objectives</p> <p>Aim of this study is to find out whether <it>FSIP1 </it>polymorphisms affect the onset of AIA in Korean population, since it is known that AIA is genetically affected by various genes.</p> <p>Methods</p> <p>We conducted association study between 66 single nucleotide polymorphisms (SNPs) of the <it>FSIP1 </it>gene and AIA in total of 592 Korean subjects including 163 AIA and 429 aspirin-tolerant asthma (ATA) patients. Associations between polymorphisms of <it>FSIP1 </it>and AIA were analyzed with sex, smoking status, atopy, and body mass index (BMI) as covariates.</p> <p>Results</p> <p>Initially, 18 SNPs and 4 haplotypes showed associations with AIA. However, after correcting the data for multiple testing, only one SNP showed an association with AIA (corrected <it>P</it>-value = 0.03, OR = 1.63, 95% CI = 1.23-2.16), showing increased susceptibility to AIA compared with that of ATA cases. Our findings suggest that <it>FSIP1 </it>gene might be a susceptibility gene for aspirin intolerance in asthmatics.</p> <p>Conclusion</p> <p>Although our findings did not suggest that SNPs of <it>FSIP1 </it>had an effect on the reversibility of lung function abnormalities in AIA patients, they did show significant evidence of association between the variants in <it>FSIP1 </it>and AIA occurrence among asthmatics in a Korean population.</p

    imPlatelet classifier: image-converted RNA biomarker profiles enable blood-based cancer diagnostics

    Get PDF
    Liquid biopsies offer a minimally invasive sample collection, outperforming traditional biopsies employed for cancer evaluation. The widely used material is blood, which is the source of tumor-educated platelets. Here, we developed the imPlatelet classifier, which converts RNA-sequenced platelet data into images in which each pixel corresponds to the expression level of a certain gene. Biological knowledge from the Kyoto Encyclopedia of Genes and Genomes was also implemented to improve accuracy. Images obtained from samples can then be compared against standard images for specific cancers to determine a diagnosis. We tested imPlatelet on a cohort of 401 non-small cell lung cancer patients, 62 sarcoma patients, and 28 ovarian cancer patients. imPlatelet provided excellent discrimination between lung cancer cases and healthy controls, with accuracy equal to 1 in the independent dataset. When discriminating between noncancer cases and sarcoma or ovarian cancer patients, accuracy equaled 0.91 or 0.95, respectively, in the independent datasets. According to our knowledge, this is the first study implementing an image-based deep-learning approach combined with biological knowledge to classify human samples. The performance of imPlatelet considerably exceeds previously published methods and our own alternative attempts of sample discrimination. We show that the deep-learning image-based classifier accurately identifies cancer, even when a limited number of samples are available.publishedVersio

    Parkinson’s disease mouse models in translational research

    Get PDF
    Animal models with high predictive power are a prerequisite for translational research. The closer the similarity of a model to Parkinson’s disease (PD), the higher is the predictive value for clinical trials. An ideal PD model should present behavioral signs and pathology that resemble the human disease. The increasing understanding of PD stratification and etiology, however, complicates the choice of adequate animal models for preclinical studies. An ultimate mouse model, relevant to address all PD-related questions, is yet to be developed. However, many of the existing models are useful in answering specific questions. An appropriate model should be chosen after considering both the context of the research and the model properties. This review addresses the validity, strengths, and limitations of current PD mouse models for translational research

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong
    corecore